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Memory Technology Background:

Memory technologies are divided into two categories. The first
category nonvolatile memories, are traditionally used in read-only or read-
mostly applications because of limited write endurance and slow write speed.
These memories are derivatives of ROM technology, which includes
EPROM, EEPROM, Flash, and more recent Ferroelectric non-volatile
memory technology. Nonvolatile memories are able to retain data in the
absence of power. The second category, volatile memories, are RAM-
devices including SRAM and DRAM. Writing to these memories is fast and
write endurance is unlimited, so they are most often used to store data that
change frequently, but they cannot store data in the absence of power. Non-
volatile memory technologies with better future potential are FRAM,
Chalcogenide, GMRAM, Tunneling MRAM and SONOS EEPROM.

FRAM is a uses a ferroelectric capacitor to store the data. This
storage mechanism is quite different from that of other non-volatile
memories, that use floating gate technology where the charge is stored. The
ferroelectric effect is the ability of a material to store a state of electric
polarization in the absence of an applied electric field. An FRAM memory
cell is created by depositing a film of ferroelectric material in crystal form
between two electrode plates to form a capacitor very similar to a DRAM
capacitor. FRAM cell could be one transistor one capacitor (1T1C) or a more
robust design using two transistors two capacitors (2T2C) for better fault
tolerance (complementary storing). However, rather than storing data as a
charge on the capacitor, a ferroelectric memory stores data within a
crystalline structure known as Perovskite. The Perovskite crystals maintain
two stable polarization states resulting from the alignment of internal
dipoles, which are used to represent ‘1’ and ‘0’ states. Since no external
electric field is required for the ferroelectric material to remain its
polarization, a ferroelectric memory device can retain data in the absence of

power.

EEPROM (electrically erasable programmable read-only memory)
use memory cells with transistors that are very similar to normal MOS



transistors, but the transistors have a second, floating gate. Applying a
programming voltage VPP (usually greater than 12 V) to the drain of the n-
channel EEPROM transistor programs the EEPROM cell. A high electric
field causes electrons flowing toward the drain to move so fast they “jump”
across the insulating gate oxide where they are trapped on the bottom,
floating, gate. The energetic electrons are referred to as hot and the effect is
known as hot-electron injection or avalanche injection. EEPROM technology
is sometimes called “floating-gate avalanche MOS” ( FAMOS ). Electrons
trapped on the floating gate raise the threshold voltage of the n-channel
EEPROM. Once programmed, an n-channel EEPROM device remains off
even with a logic high applied to the top gate. An un-programmed n-channel
device will turn on as normal with a logic high top-gate voltage. The
programming voltage is applied either from a special programming box or by
using on-chip charge pumps. In programming an EEPROM, an electric field
is used to remove electrons from the floating gate of a programmed
transistor. This is in contrast to EPROMs, which must be exposed to a UV-
lamp to remove electrons from the floating gate. This usually requires the
removal of the EPROM from the system.

Reliability Issues of FRAM

The major non-fabrication-related issues of FRAM reliability include
data retention, fatigue, aging, imprint, and radiation. Data retention, one of
the most important characteristics of non-volatile memories, is defined as the
ability of a memory to maintain stored data between the time it is written and
the time it is subsequently read. Although data retention is influenced at a
fundamental level by design and manufacturing factors, retention failures are
accelerated by high temperatures, which cause thermal depolarization of the
poled state in the ferroelectric material. The signal loss due to data retention
failures recovers after a rewrite and immediate read.

Fatigue occurs in ferroelectric materials with an increased number of
switching cycles (read or write cycles) and is characterized by a decrease in
switchable polarization. This process is related to the electrode interfacial
areas of the memory cells and electric-field assisted migration of oxygen
vacancies within ferroelectric materials.

Aging is similar to retention failure in that it is characterized by
signal loss over time, but, unlike retention failures, failures due to aging
occur during the retention period and do not recover after a rewrite and
immediate read. During the aging process, a gradual stabilization of the
domain structure occurs, which causes the ferroelectric material to become
less responsive to applied electric fields.

Imprint is a reliability issue specific to ferroelectric material.
Accumulation of charge in the ferroelectric cell over time make a capacitor



that has spent a significant amount in one polarity reluctant to switch
polarities.

The radiation tolerance of ferroelectric memory is limited by the
CMOS circuit elements. Prior studies have shown no significant difference
between the radiation tolerance of commercial memory devices with and
without ferroelectric material.

Reliability Issues of EEPROM

The reliability issues with EEPROM are very similar with the
exception of imprint, which is specific to FRAM. In addition, the process by
which fatigue occurs differs, and charge-trapping is an aspect specific to
EEPROMs. During programming, the control gate of an EEPROM cell is
made positive relative to the source-drain area. The floating gate is
capacitatively coupled to the control gate, and when sufficient voltage is
generated and the tunneling threshold is exceeded, electrons tunnel through
the thin "tunnel” oxide window into the floating gate. The negative charge
then remains trapped in the floating gate since inadequate voltage exists,
normally to allow the electrons to tunnel back out. To erase the memory cell,
the process is simply reversed. To read the cell, the control gate and source
are brought to predetermined reference voltages and the current through the
cells is measured. The transistor of a programmed cell is "on" and the
transistor of an erased cell is "off".

Two basic types of failure occur when EEPROM cell are repeatedly
written and erased: dielectric failure and charge trapping. Dielectric failures
are the source of very low level random failures. They are caused by leakage
through minor unscreenable flaws in the tunnel oxide. On contemporary
production EEPROMS, dielectric failures are typically too rare to be noticed
by standard lot sampling techniques until several hundred thousand write-
erase cycles have passed. After this, they create a very low but visible level

of random bit failures.

Charge trapping is the effect that creates intrinsic failure in
EEPROMs. During write-erase cycling, small amounts of isolated negative
and positive charge become trapped in imperfections in the tunnel oxide.
Once trapped, the charge is no longer free to tunnel out of the oxide. In
practice, electrons are more commonly trapped, and their presence creates a
barrier to the tunneling of other electrons through the tunnel oxide. The
apparent voltage needed to tunnel in either direction through the oxide
increases. This reduces the amount of charge that can be moved in and out of
the floating gate. When the accumulation of trapped charge becomes severe
enough, it is no longer possible to move enough charge to clearly distinguish
a one from a zero. At this point, the memory cells affected must be

abandoned.



It is desirable to be able to program EEPROMs as quickly as
possible. However, accelerating the programming of EEPROM cells requires
the use of higher programming voltages, which accelerate the charge
trapping mechanism and generally degrade the endurance of the EEPROM.

It might seem intuitive that tunnel oxide might degrade with
endurance cycling and that data retention would suffer as a result. But the
effect of cycling on the retention characteristics of EEPROM memory is very
slight. That does occur is not due to increasing leakage through normal
tunnel oxide, but the statistical influence of the random fajlures which are in
fact caused by leakage through rarefied defects. The effect of cycling on the
retention characteristics of before reaching the intrinsic limit of EEPROM
memories is so slight, in fact, that it is usually ignored. ‘

Tester Design

A custom memory tester was designed to create a low-cost, user-
customizable testing for non-volatile memory that could perform reliability
and endurance tests. The objective was to evaluate the reliability and
endurance characteristics of various non-volatile memories for potential use

in space applications.

A XILINX XC4010E 10,000 gate, 5V FPGA was chosen for the 5V
memories, and a XILINX XC4010XL, a 3.3V version of the XC4010E, was
chosen for the 3.3V memories. The tester board contains a parallel port for
communication with a PC, an LED for error readout, and an EEPROM

socket for PC-independent operation.

The tester can be configured to perform reliability or endurance tests,
and each test can log errors in one of two ways. The error data can either be
logged on a PC through the parallel port, or the tester can be used by itself,
independent of -a PC, by using an EEPROM to load the bit stream file and
“scrolling” the error information on a 7-segment LED display. The memory
tester configuration for a parallel FRAM is shown below.

This test bench offers several advantages over commercial testers
when used for reliability and endurance testing. Endurance testing to a chip's
specifications could involve more than 10" read/write cycles, which can take
up to 28 days for the Ramtron FM24C04 serial FRAM. Commercially
available memory testers with high hourly rates may prove extremely
expensive for testing NVMs with 10" to 10" read/write cycles. In
comparison, the FPGA-based testers are inexpensive and more flexible. If
several FPGA boards are used, many chips can be tested simultaneously at a
fraction of the cost compared to the commercial testers. The highly portable,
PC-independent nature of the test bench would also make it suitable for use
in radiation testing, given proper shielding for the tester.
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Figure 1: Non-volatile memory tester

Test Methodology

A MATS+ test was chosen to test the reliability of the non-volatile
memories. In order to understand the test procedure, a brief example and
explanation of Van de Goor’s memory test notation is provided below:

UP{W10101010; R; W01010101)

- UP = Perform the entire set of operations in parentheses
from the first memory address to the last

~ W10101010 = Write the data pattern ‘10101010’

- R = Read back the data

~ W01010101 = Write the data pattern 01010101

~{Increment address and loop)

The MATS+ reliability test can detect address decoder faults and stuck-at
faults, and was programmed to cycle through all the addresses in the
memory. This reliability test was chosen because it met the minimum test
criteria while fitting into the relatively small FPGA. Again using Van de
Goor’s notation, the MATS+ test is described as follows:

UP(WO1010101)
UP(R; W10101010)
DOWN (R; W01010101)
LOOP BACK TO ({2}

L N

In order to test the endurance of the non-volatile memories, the
following basic endurance test was used:

1.(w01010101; R; W10101010; R)
2. LOOP BACK TO (1)



Due to the prohibitive amount of time required to exhaust all
addresses in the memories with an endurance test, it was decided that a
single address or small range of addresses would be used instead.

Upon an error in during either test, the tester logs the total number of
errors that have occurred, the number of read and write cycles at the point
the error occurred, the memory address at which error occurred, the incorrect
data value read, and (on the reliability test) it indicates the part of the
memory test the failure occurred on. If the parallel port version of the tester
is used, a simple program logs the data on the screen and gives the user the
option of saving the data to a file. The other version of the tester, which is
independent of the PC, scrolls the error information corresponding to the
most recent error across the LED display, using various symbols to describe
the data about to be displayed. An EEPROM is used in this tester so that a
PC is not required to download the FPGA bit stream, which makes it

completely independent of the PC.

Test Procedure and Preliminary Results

Memory testing is ongoing, and the results to date are preliminary.
Three non-volatile memories are under test: Ramtron FM24C04 serial
FRAM, Ramtron FM1808 Paralle] FRAM, and the Northrop-Grumman’s
256 kb Rad-Hard EEPROM. Reliability tests have produced no errors in any
of the memories. Endurance testing on the Ramtron FM24C04 serial FRAM
has exceeded the endurance specification of the chip (1.0x10' read.write
cycles) by over four times (it has undergone 4.2x10'" read/write cycles) with
no errors. Endurance testing on the Ramtron FM 1808 parallel FRAM has not
yet exceeded the endurance specifications, but no errors have surfaced to

date.

Status # R/W Cycles Endurance
(Endurance) Spec

Ramtron Testbed 4.2E10 1E10
Serial FRAM complete:
Both tests
running
Ramtron Testbed .6E10 1E10
Parallel FRAM | partially
complete:
endurance
tests running
NG EEPROM | Testbed work | N/A 10,000
in progress

Table 1: Preliminary Results

Full test results will be available by December, 2001.



Concluding remarks

A custom memory tester was designed to create a low-cost, user-
customizable testing for non-volatile memory that could perform reliability
and endurance tests. The tester board contains a parallel port for
communication with a PC, an LED for error readout, and an EEPROM
socket for PC-independent operation. The main objective is to evaluate the
reliability and endurance characteristics of various non-volatile memories for
potential use in space applications. Testing is currently in progress for
various memory chips. Results are expected form various tests in next two

months.
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